Technical and Economic Feasibility Assessment

- The primary objective is to understand technical feasibility and economics of biomass-to-ethanol processes
 - Helps determine research areas with "greatest bang for the buck"
 - Assists DOE and industry in determining the feasibility of bioethanol

Background

- NREL has been modeling biomass-to-ethanol processes for 15 years
 - Most recent full design report published in 1999 (http://www.afdc.doe.gov/pdfs/3957.pdf)
 - Updated report to be published in April 2002
- Minimum Ethanol Selling Price (\$ per gallon ethanol) is the final result
 - Relative values between research options used to assist in guiding research
 - Absolute values used for policy analyses
- Scientific and technical insight is developed at many levels when conducting integrated process evaluations

Design and Assessment Methodology

For more information, see Wooley, et. al "Process Design and Costing of Bioethanol Technology..." Biotechnology Progress, 1999

Supports DOE Sponsored Research

- Collect experimental results and full material balances around *critical* process areas
- Convert results to conceptual process designs and develop the "state of the technology" process model
- Use research hypotheses to improve process concepts and develop "target" process models
- Develop research projects to reach targets and attain economically viable process

Corn Stover Feedstock

Model Parameter*	Value
Feedstock Cost	\$35/dry ton
Cellulose Fraction	37.1%
Xylan Fraction	19.9%
Arabinan Fraction	2.5%
Mannan Fraction	1.3%
Galactan Fraction	1.7%
Lignin Fraction	18.2%

^{*} Composition based on NREL data

Relative Fractions of Sugars
Within Corn Stover

Conceptual Process Design for Corn Stover

For more information, see Wooley, et. al "Lignocellulosic Biomass to Ethanol Process Design and Economics..." NREL/TP-580-2615 July, 1999

Feedstock Handling

- Brings biomass into facility
- Prepares biomass for pretreatment
- Need to develop improved handling systems

Pretreatment

- Converts hemicellulose to fermentable sugars
- Makes cellulose susceptible to enzymatic hydrolysis

Pretreatment

Conditions	Process Target
Technology	Dilute Acid
Reactor Solids Concentration	30 %
Residence Time	2 min
Acid Concentration	1.1 %
Temperature	190 °C
Reactor Metallurgy	Incoloy 825- clad

Parameter Source

- Corn stover Sunds hydrolyzer experiments
- Corn stover steam gun experiments
- Prior research on hardwood feedstocks

Pretreatment

\$0.06/gal change for each 10% change in xylose yield

Solid/Liquid Separation and Conditioning

- Separation of pretreatment solids from liquor
- Conditioning of liquor fraction prior to fermentation

Conditions	Process Target
Equipment	Pressure Filter
Separation Temp	135 °C
Separation Pressure	5 atm
Conditioning	Overlime only
Wash / Hydrolyzate Ratio	0.58 kg/kg

Saccharification and Fermentation

Enzymatic hydrolysis of cellulose to glucose

Saccharification and Fermentation

Saccharification	Process Target
Enzyme Source	purchased
Enzyme Cost	\$0.11/gal EtOH
SHF vs. SSF	Hybrid
Temperature	65 °C
Residence Time	1.5 days
Cellulose to Glucose Yield	90%

Parameter Source

- Enzyme cost is 10xreduction from estimated cost for cellulase enzyme for existing markets
- Enzyme subcontracts w/ Genencor and Novozymes
- Hybrid design advantageous for more thermostable enzyme system

Saccharification and Fermentation

Microbial conversion of sugars to ethanol

Saccharification and Fermentation

Fermentation	Process Target
Residence Time	2 days
Temperature	37 °C
Nutrient Requirement	0.25% CSL ⁽¹⁾ 0.33 g/L DAP ⁽²⁾
Effective Solids Conc.	20%
Glucose to Ethanol Yield	92%
Xylose to Ethanol Yield	85%
Arabinose to Ethanol Yield	85%
Contamination Loss	5%

(1) Corn Steep Liquor(2) Di-ammonium Phosphate

Parameter Source

- Based on prior conversion of hardwood hydrolyzates using Z. mobilis
 - Nutrients
- Strain improvements
 - Arabinose YeastCRADA with CRAand NCGA
 - Other government sponsored research

Distillation and Ethanol Purification

- Separation of ethanol and CO₂ from "beer"
- Ethanol concentration in beer is about 5% w/w
- Primary Unit Operations
 - Distillation
 - Pressure-swing adsorption (molecular sieve)
 - Solid/liquid separation
 - Evaporation
- Operations well-known
- Process uncertainties
 - Solids behavior

Wastewater Treatment

- Anaerobic and aerobic treatment
- Reduce Biochemical Oxygen Demand (BOD)
- Recycle water

Burner/Boiler/Turbogenerator

- Boiler generates steam from lignin residue and evaporator syrup
- Excess electricity sold to power grid (\$0.04/kWh credit)
- High capital cost area (35% of total installed cost)

Relative Cost Contribution by Area

